

Stereoselective Synthesis of 3-Carboxy-4,5-dihydropyrroles via an Intramolecular Iminium Ion Cyclization Reaction

Jinbao Xiang, Hongxiang Xie, Zhuo Li, Qun Dang, and Xu Bai*

The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences and The College of Chemistry, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China

Supporting Information

ABSTRACT: An efficient and practical method has been developed for the synthesis of *trans*-4,5-disubstituted 3-carboxy-4,5-dihydropyrroles via an intramolecular iminium ion cyclization reaction of readily accessible Baylis—Hillman derivatives and aldehydes in moderate to high yield. These new dihydropyrroles could be easily converted to pyrroles or pyrrolidines.

he dihydropyrrole framework is a valuable structural motif found in a number of natural products and pharmaceutical agents.¹ 3-Carboxy-4,5-dihydropyrroles were not only shown to possess interesting biological activities² but also used as key intermediates in the synthesis of natural products³ and bioactive agents.⁴ Consequently, synthesis of 3-carboxydihydropyrroles has drawn attention from both organic and medicinal chemists.^{5–11} The commonly used methods include applications of the [3 + 2] cycloaddition,⁶ reaction of acyclic imides with 1-(ethoxycarbonyl)cyclopropyltriphenylphosphonium tetrafluoroborate,⁷ nucleophilic amine ring-opening cyclization of donor-acceptor cyclopropanes,⁸ iodocyclization of alkenyl-substituted β -enamino esters,⁹ and Ce(IV)mediated oxidative addition of allyltrimethylsilane to β -carbonyl imines.¹⁰ Recently, continuing efforts in this area have led to several new synthetic approaches.¹¹ For example, Ma's group disclosed a versatile palladium-catalyzed domino threecomponent reaction of 2-(2,3-allenyl)acylacetates with organic halides and amines;^{11a} Wang's group reported the BF3·Et2Opromoted three-component reaction of propargylic alcohols with 2-butynedioates and benzyl-i-propylamine;^{11b} Zhang's group described the DBU-catalyzed [3 + 2] cycloaddition of electron-deficient 1,3-conjugated enynes with 2-aminomalonates;^{11c} France's group reported Ni(ClO₄)₂·6H₂O-catalyzed nucleophilic amine ring-opening cyclization of donor-acceptor cyclopropanes under milder reaction conditions.^{11d} Despite the numerous methods reported to date, there are few that are efficient for the synthesis of 3-carboxy-4,5-dihydropyrroles with a controlled 4,5-substitution pattern.^{5d,11a,c}

Baylis–Hillman adducts and their derivatives have been proven to be efficient starting materials for the synthesis of useful carbo- and heterocycles.¹² As part of our continuing interest in the utilization of iminium ions in the synthesis of heterocycles,¹³ we envisioned that 3-carboxy-4,5-dihydropyrrole **6** could be readily prepared from key precursor **3**, prepared from simple Baylis–Hillman acetate **1** and a primary amine (Scheme 1). The reaction of **3** and an aldehyde could form iminium ion intermediate **5** which may undergo a cyclization

reaction *in situ* to result in the target dihydropyrrole. Herein, the details of these studies are presented.

As expected, the key precursors 3 were readily prepared from the known Baylis–Hillman acetates 1^{14} and primary amines 2 in good to excellent yields (Table 1).¹⁵ The stereochemistry of these amines was determined as the *E*-configuration based on the vinylic proton at 7.74–7.96 ppm (singlet) in ¹H NMR spectra.^{15a} As shown in Table 1, R¹ is aryl and R² can be aliphatic or aromatic.

Treatment of acrylate **3a** with 1.2 equiv of benzaldehyde for 0.5 h in refluxing toluene with water removal via a Dean–Stark trap gave the desired product **6a** in 79% yield (entry 1, Table 2).¹⁶ Both an LC–MS and ¹H NMR spectrum of the crude product indicated that **6a** is a single isomer. The *trans* configuration was based on the coupling pattern at 4.16 and 4.32 ppm ($J_{4,5} = 7.2$ Hz) of ¹H NMR.¹⁷ The reaction results of precursors **3** (shown in Table 1) and various aldehydes are summarized in Table 2. In general, the desired 3-carboxy-dihydropyrroles **6** were obtained in good to high yields with various functional groups (e.g., nitro, cyano, halo, and methoxy) at the benzene ring of R¹ and R³. The *trans*

 Received:
 June 20, 2015

 Published:
 July 27, 2015

		R^2				
	\mathbb{R}^{1}	R ² NH ₂ (2)	NH P1			
	MeO ₂ C OAc 1	Et₃N, THF 0 ºC, 1-2 h	MeO ₂ C 3	_/`		
entry	\mathbb{R}^1	\mathbb{R}^2	3	yield (%) ^b		
1 ^c	Ph	Me	3a	90		
2	Ph	<i>n</i> -Bu	3b	79		
3	Ph	<i>i</i> -Pr	3c	67		
4	Ph	Bn	3d	78		
5 ^d	Ph	Ph	3e	61		
6	4-NO ₂ Ph	<i>n</i> -Bu	3f	67		
7	4-CNPh	<i>n</i> -Bu	3g	60		
8	4-ClPh	<i>n</i> -Bu	3h	73		
9	4-MePh	<i>n</i> -Bu	3i	82		
10	2-MePh	<i>n</i> -Bu	3j	73		
11	4-MeOPh	<i>n</i> -Bu	3k	69		
12	2-MeOPh	<i>n</i> -Bu	31	64		

^{*a*}Reagents and conditions (except where designated): **1** (1.0 equiv), **2** (2.0 equiv), and Et₃N (1.0 equiv) in THF, 0 °C. ^{*b*}Isolated yield. ^{*c*}Methylamine alcohol solution (30%) was used. ^{*d*}Ia (1.0 equiv) and aniline (1.5 equiv) in H₂O, 80 °C, 5 h.

selectivity observed for compound 6a held true for all the desired products, which were determined by comparison of ¹H NMR spectra with that of compound 6a.

As disclosed in Table 2, aromatic aldehydes participated in the current reaction effectively to produce the desired products in moderate to high yields (entries 1-12, Table 2). Both electron-rich and -deficient aldehydes gave good yields, suggesting that the current reaction is less sensitive to electronic factors on the aromatic aldehydes. In contrast, enolizable aliphatic aldehydes failed in the current reaction (entry 13, Table 2),^{16,18} which could prevent the formation of the reactive iminium ion intermediate. Pivalaldehyde also failed to give any desired product which might be too hindered for the cyclization (entry 14, Table 2). On the other hand, cyclohexanecarbaldehyde was a good substrate for the current reaction, producing the desired product 60 in 56% yield (entry 15, Table 2). When $R^2 = n$ -Bu and $R^3 = Ph$, various R^1 groups are compatible for the current reactions to yield the expected products 6 (entries 16-23, Table 2). Aliphatic groups were suitable as R^2 for the current cyclization reaction (entries 1, 16, 24, 25, Table 2). When $R^2 = i$ -Pr, a 50% yield of 6x and 31% yield of *cis*-isomer 8x ($J_{4,5}$ = 18.9 Hz) were obtained (entry 24, Table 2). This result is consistent with the reaction mechanism (see later section). However, when $R^2 = Ph$, only a trace amount with the molecular ion corresponding to product 6z was detected by LC-MS after 36 h (entry 26, Table 2). This was very likely due to the difficulty in forming the iminium ion between a secondary aromatic amine and an aldehyde. Moreover, we also attempted to expand the scope of this reaction to ketones (e.g., cyclohexanone, acetophenone); the reactions failed to afford the desired 3-carboxy-dihydropyrroles.

A plausible mechanism for the formation of products **6** and **8** is outlined in Scheme 2. It was proposed that the cyclization reaction proceeded through an azomethine ylide formed from the condensation of compound **3** with an aldehyde. When $R^2 = Me$, *n*-Bu, or Bn, the thermal 6π electrocyclization of favored azomethine ylide **5** with a disrotatory mode gives the expected *trans*-configuration products **6**.¹⁹ When $R^2 = i$ -Pr, intermediate

	R ²				R ²	
	ŇH	⊃1	R ³ CHO (4)		<u>_</u> N	▲R ³
	MeO ₂ C 3	·	toluene, N ₂ reflux (-H ₂ O)	MeO ₂ Ć	/ ۶ 6	¹
entry	\mathbb{R}^1	R ²	R ³	time (h)	6	yield (%) ^c
1	Ph	Me	Ph	0.5	6a	79
2	Ph	Me	4-NO ₂ Ph	3	6b	62
3	Ph	Me	4-CNPh	1.5	6c	68
4	Ph	Me	4-ClPh	4	6d	53
5	Ph	Me	3-ClPh	0.5	6e	67
6	Ph	Me	2-ClPh	0.5	6f	72
7	Ph	Me	4-MePh	1.5	6g	78
8	Ph	Me	3-MePh	1	6h	77
9	Ph	Me	2-MePh	0.5	6i	75
10	Ph	Me	4-MeOPh	3	6j	78
11	Ph	Me	2-MeOPh	3.5	6k	67
12	Ph	Me	2-thienyl	1	61	73
13 ^d	Ph	Me	<i>n</i> -Pr	4	6m	0
14 ^e	Ph	Me	<i>t</i> -Bu	4	6n	0
15	Ph	Me	c-Hex	1	60	56
16	Ph	<i>n</i> -Bu	Ph	1	6p	75
17	4-NO ₂ Ph	<i>n</i> -Bu	Ph	1.5	6q	66
18	4-CNPh	<i>n</i> -Bu	Ph	1.5	6r	73
19	4-ClPh	<i>n</i> -Bu	Ph	1.5	6s	79
20	4-MePh	<i>n</i> -Bu	Ph	1.5	6t	84
21	2-MePh	<i>n</i> -Bu	Ph	1.5	6u	75
22	4-MeOPh	<i>n</i> -Bu	Ph	1.5	6v	77
23	2-MeOPh	<i>n</i> -Bu	Ph	1	6w	66
24	Ph	<i>i</i> -Pr	Ph	6	6x	50 ^f
25	Ph	Bn	Ph	2	6y	79
26 ^g	Ph	Ph	Ph	36	6z	trace

^{*a*}All reactions were performed on 0.5 mmol scale using 1.2 equiv of aldehydes in refluxing toluene with a Dean–Stark trap under nitrogen. ^{*b*}Cis isomer was not obtained except for substrate **3c** (entry 24). ^{*c*}Isolated yield. ^{*d*}35% of starting material **3a** was recovered, and 20% yield of byproduct (2*E*,2'*E*)-dimethyl 2,2'-(methylazanediyl)bis-(methylene)bis(3-phenylacrylate) **7a** was isolated. ^{*e*}32% of starting material **3a** was recovered, and 26% yield of byproduct **7a** was isolated. ^{*f*}The trans/cis ratio is 62:38, and 31% of cis-isomer **8x** was isolated. ^{*g*}Trace amount with molecular ion corresponding to desired product **6z** was detected by LC-MS.

Scheme 2. Proposed Reaction Mechanism

5 undergoes isomerization to intermediate 9 due to the repulsion between the methyl of *i*-Pr and the phenyl of azomethine ylide; the competition of transition states 5x and 9x leads to a mixture of isomers 6x and 8x.

The new dihydropyrrole product 6a could be readily transformed to pyrrole 10a with DDQ oxidation in CH_2Cl_2

at room temperature (Scheme 3).²⁰ In addition, reduction of **6a** using $NaBH(OAc)_3$ gave 3,4,5-trisubstituted pyrrolidine **11a**

with the configuration as indicated (Scheme 3).²¹ The *transtrans* configuration was based on the coupling pattern at 3.19 and 3.58 ppm ($J_{3,4} = 7.5$ Hz) and the coupling pattern at 3.58 and 3.67 ppm ($J_{4,5} = 8.4$ Hz) of ¹H NMR.^{17a} Thus, highly substituted pyrroles and pyrrolidines are readily accessible using the method.

In summary, we have developed an efficient and practical strategy for the synthesis of *trans-4*,5-disubstituted 3-carboxy-4,5-dihydropyrroles via an intramolecular iminium ion cyclization reaction of Baylis—Hillman derivatives with aldehydes in moderate to high yield. The synthetic utility of the dihydropyrroles obtained via this new method was further demonstrated by oxidation to the corresponding pyrroles or reduction to pyrrolidines with multiple substituents and a *trans—trans* configuration. This new method to access dihydropyrroles compliments the existing collection of methods, which should allow rapid synthesis of compounds containing the dihydropyrrole moiety.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b01787.

Experimental procedures, full characterization data, copies of LC-MS-ELSD and NMR spectra for all products (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: xbai@jlu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Natural Science Foundation of China (No. 81072526) and a grant from the Sci-Tech Development Project of Jilin Province in China (No. 20140309010YY). Additional support was provided by Changchun Discovery Sciences, Ltd.

REFERENCES

(1) (a) Fattorusso, E.; Taglialatela-Scafati, O. Modern Alkaloids: Structure, Isolation, Synthesis and Biology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2008. (b) Carmeli, S.; Moore, R. E.; Patterson, G. M. L. Tetrahedron **1991**, 47, 2087–2096. (c) Tyroller, S.; Zwickenpflug, W.; Richter, E. J. Agric. Food Chem. **2002**, 50, 4909– 4915. (d) Marti, C.; Carreira, E. M. J. Am. Chem. Soc. **2005**, 127, 11505–11515. (e) Castellano, S.; Fiji, H. D. G.; Kinderman, S. S.; Watanabe, M.; de Leon, P.; Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. **2007**, 129, 5843–5845. (f) Magedov, I. V.; Luchetti, G.; Evdokimov, N. M.; Manpadi, M.; Steelant, W. F. A.; Van Slambrouck, S.; Tongwa,
P.; Antipin, M. Y.; Kornienko, A. *Bioorg. Med. Chem. Lett.* 2008, 18, 1392–1396. (g) Li, W.; Khullar, A.; Chou, S.; Sacramo, A.; Gerratana,
B. *Appl. Environ. Microbiol.* 2009, 75, 2869–2878. (h) Ye, Z.; Shi, L.; Shao, X.; Xu, X.; Xu, Z.; Li, Z. *J. Agric. Food Chem.* 2013, 61, 312–319. (2) Jacoby, D.; Celerier, J. P.; Haviari, G.; Petit, H.; Lhommet, G. *Synthesis* 1992, 1992, 884–887.

(3) (a) David, O.; Blot, J.; Bellec, C.; Fargeau-Bellassoued, M.-C.; Haviari, G.; Célérier, J.-P.; Lhommet, G.; Gramain, J.-C.; Gardette, D. J. Org. Chem. **1999**, 64, 3122–3131. (b) Humphrey, J. M.; Liao, Y.; Ali, A.; Rein, T.; Wong, Y.-L.; Chen, H.-J.; Courtney, A. K.; Martin, S. F. J. Am. Chem. Soc. **2002**, 124, 8584–8592. (c) Haimowitz, T.; Fitzgerald, M. E.; Winkler, J. D. Tetrahedron Lett. **2011**, 52, 2162–2164.

(4) Kondo, T.; Nekado, T.; Sugimoto, I.; Ochi, K.; Takai, S.; Kinoshita, A.; Hatayama, A.; Yamamoto, S.; Kishikawa, K.; Nakai, H.; Toda, M. *Bioorg. Med. Chem.* **2008**, *16*, 1613–1631.

(5) (a) Saegusa, T.; Ito, Y.; Kinoshita, H.; Tomita, S. J. Org. Chem. 1971, 36, 3316–3323. (b) Fukuyama, T.; Laird, A. A. Tetrahedron Lett. 1986, 27, 6173–6176. (c) Vedejs, E.; Grissom, J. W. J. Am. Chem. Soc. 1988, 110, 3238–3246. (d) De Boeck, B.; Jiang, S.; Janousek, Z.; Viehe, H. G. Tetrahedron 1994, 50, 7075–7092. (e) Kondo, T.; Nekado, T.; Sugimoto, I.; Ochi, K.; Takai, S.; Kinoshita, A.; Hatayama, A.; Yamamoto, S.; Kawabata, K.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2008, 16, 190–208. (f) Bott, T. M.; Vanecko, J. A.; West, F. G. J. Org. Chem. 2009, 74, 2832–2836.

(6) (a) Padwa, A.; Haffmanns, G.; Tomas, M. J. Org. Chem. 1984, 49, 3314–3322.
(b) Vedejs, E.; Grissom, J. W. J. Org. Chem. 1988, 53, 1876–1882.
(c) Berrée, F.; Morel, G. Tetrahedron 1995, 51, 7019–7034.
(d) Dalili, S.; Yudin, A. K. Org. Lett. 2005, 7, 1161–1164.
(e) Konev, A. S.; Novikov, M. S.; Khlebnikov, A. F. Tetrahedron Lett. 2005, 46, 8337–8340.
(f) Komatsu, M.; Kasano, Y.; Yonemori, J.; Oderaotoshi, Y.; Minakata, S. Chem. Commun. 2006, 526–528.
(g) Nasiri, F.; Pourdavaie, K. Mol. Diversity 2007, 11, 37–45.

(7) Flitsch, W.; Pandl, K.; Ruβkamp, P. Liebigs Ann. Chem. 1983, 1983, 529-534.

(8) (a) Celerier, J. P.; Haddad, M.; Jacoby, D.; Lhommet, G. *Tetrahedron Lett.* **1987**, *28*, 6597–6600. (b) Nambu, H.; Fukumoto, M.; Hirota, W.; Yakura, T. Org. Lett. **2014**, *16*, 4012–4015. (c) Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. **2015**, *54*, 227–230.

(9) (a) Ferraz, H. M. C.; de Oliveira, E. O.; Payret-Arrua, M. E.; Brandt, C. A. J. Org. Chem. **1995**, 60, 7357–7359. (b) Pancote, C. G.; de Carvalho, B. S.; Luchez, C. V.; Fernandes, J. P. S.; Politi, M. J.; Brandt, C. A. Synthesis **2009**, 2009, 3963–3966.

(10) Zhang, Y.; Raines, A. J.; Flowers, R. A., II. J. Org. Chem. 2004, 69, 6267–6272.

(11) (a) Cheng, J.; Jiang, X.; Zhu, C.; Ma, S. Adv. Synth. Catal. 2011, 353, 1676–1682. (b) Yin, G.; Zhu, Y.; Lu, P.; Wang, Y. J. Org. Chem. 2011, 76, 8922–8929. (c) Yu, X.; Zhou, G.; Zhang, J. Chem. Commun. 2012, 48, 4002–4004. (d) Martin, M. C.; Patil, D. V.; France, S. J. Org. Chem. 2014, 79, 3030–3039.

(12) (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. *Chem. Rev.* 2003, 103, 811–891. (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. *Chem. Rev.* 2010, 110, 5447–5674. (c) Basavaiah, D.; Veeraraghavaiah, G. *Chem. Soc. Rev.* 2012, 41, 68–78.

(13) (a) Xiang, J.; Zheng, L.; Chen, F.; Dang, Q.; Bai, X. Org. Lett. 2007, 9, 765–767. (b) Xiang, J.; Xie, H.; Wen, D.; Dang, Q.; Bai, X. J. Org. Chem. 2008, 73, 3281–3283. (c) Xiang, J.; Zhu, T.; Dang, Q.; Bai, X. J. Org. Chem. 2010, 75, 8147–8154. (d) Xiang, J.; Geng, C.; Yi, L.; Dang, Q.; Bai, X. Mol. Diversity 2011, 15, 839–847. (e) Xiang, J.; Li, H.; Yang, K.; Yi, L.; Xu, Y.; Dang, Q.; Bai, X. Mol. Diversity 2012, 16, 173–181. (f) Yang, K.; Xiang, J.; Bao, G.; Dang, Q.; Bai, X. ACS Comb. Sci. 2013, 15, 519–524. (g) Zhu, T.; Xiang, J.; Liu, Z.; Dang, Q.; Bai, X. Synlett 2015, 26, 238–242.

(14) (a) Basavaiah, D.; Rao, P. D. Synth. Commun. 1994, 24, 917–923. (b) Ollevier, T.; Mwene-Mbeja, T. M. Tetrahedron 2008, 64, 5150–5155. (c) Guo, Y.; Shao, G.; Li, L.; Wu, W.; Li, R.; Li, J.; Song, J.; Qiu, L.; Prashad, M.; Kwong, F. Y. Adv. Synth. Catal. 2010, 352, 1539–1553.

Organic Letters

(15) (a) Paira, M.; Mandal, S. K.; Roy, S. C. *Tetrahedron Lett.* **2008**, 49, 2432–2434. (b) Ghosh, S.; Dey, R.; Chattopadhyay, K.; Ranu, B. C. *Tetrahedron Lett.* **2009**, 50, 4892–4895. (c) The (*Z*)-isomers are difficult to prepare with currently available methods.

(16) Xie, H.; Xiang, J.; Dang, Q.; Bai, X. Synlett 2012, 23, 585-588.
(17) (a) Gaebert, C.; Mattay, J. Tetrahedron 1997, 53, 14297-14316.
(b) Yan, M.; Jacobsen, N.; Hu, W. Angew. Chem., Int. Ed. 2004, 43, 6713-6716.
(c) Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.; Re, N.; Cenini, S. Chem. - Eur. J. 2009, 15, 1241-1251.

(18) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765–2809.

(19) (a) Beaudry, C. M.; Malerich, J. P.; Trauner, D. *Chem. Rev.* 2005, 105, 4757–4778. (b) Thompson, S.; Coyne, A. G.; Knipe, P. C.; Smith, M. D. *Chem. Soc. Rev.* 2011, 40, 4217–4231.

(20) Funke, C.; Es-Sayed, M.; de Meijere, A. Org. Lett. 2000, 2, 4249-4251.

(21) Cimarelli, C.; Palmieri, G. J. Org. Chem. 1996, 61, 5557-5563.